OLS Regression Results
| Dep. Variable: | Income | R-squared: | 0.878 |
| Model: | OLS | Adj. R-squared: | 0.875 |
| Method: | Least Squares | F-statistic: | 238.4 |
| Date: | Tue, 25 Jan 2022 | Prob (F-statistic): | 1.17e-16 |
| Time: | 22:45:38 | Log-Likelihood: | -119.61 |
| No. Observations: | 35 | AIC: | 243.2 |
| Df Residuals: | 33 | BIC: | 246.3 |
| Df Model: | 1 | | |
| Covariance Type: | nonrobust | | |
| coef | std err | t | P>|t| | [0.025 | 0.975] |
| Intercept | -23.1764 | 5.918 | -3.917 | 0.000 | -35.216 | -11.137 |
| Education | 5.5742 | 0.361 | 15.440 | 0.000 | 4.840 | 6.309 |
| Omnibus: | 2.854 | Durbin-Watson: | 2.535 |
| Prob(Omnibus): | 0.240 | Jarque-Bera (JB): | 1.726 |
| Skew: | 0.502 | Prob(JB): | 0.422 |
| Kurtosis: | 3.420 | Cond. No. | 75.8 |
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.